A Nonlinear Model Predictive Control Algorithm for Obstacle Avoidance in Autonomous Ground Vehicles within Unknown Environments

نویسندگان

  • Jiechao Liu
  • Paramsothy Jayakumar
  • Jeffrey L. Stein
  • Tulga Ersal
چکیده

A nonlinear model predictive control algorithm is developed for obstacle avoidance in high-speed, large-size autonomous ground vehicles (AGVs) that perceive the environment only through information provided by on-board sensors. The mission of the AGV is to move from its initial configuration to the goal configuration safely. The resulting trajectory should be collision-free and the AGV should be dynamically safe. As a starting point, the scenario where the vehicle moves on a flat surface at a constant speed is considered. The nonlinear MPC algorithm generates steering commands for completing the mission while enforcing safety constraints. The first safety constraint is avoiding obstacles. This is fulfilled by constraining the position of the AGV inside a safe region established from sensor data. The second safety constraint is ensuring dynamical safety. This is translated into avoiding single tire lift-off, which is implemented by limiting the steering angle within a range obtained using a 14 DoF vehicle dynamics model. At each sampling time, at least one multi-phase optimal control problem (OCP) is formulated and solved on-line. The safe region is partitioned into multiple sub-regions, which can then be specified without using piecewise functions. The fact that the optimal trajectory traverses the sub-regions sequentially and hence the position constraints are different from phase to phase makes the OCP multi-phase. The multi-phase OCP is transcribed into a nonlinear programming problem using the hp-pseudospectral method, and solved using the interior-point method. Simulations of an AGV approaching multiple obstacles show the effectiveness of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Mpc Algorithm with Combined Speed and Steering Control for Obstacle Avoidance in Autonomous Ground Vehicles

This article presents a model predictive control based obstacle avoidance algorithm for autonomous ground vehicles in unstructured environments. The novelty of the algorithm is the simultaneous optimization of speed and steering without a priori knowledge about the obstacles. Obstacles are detected using a planar LIDAR sensor and a multi-phase optimal control problem is formulated to optimize t...

متن کامل

Obstacle avoidance of autonomous vehicles based on model predictive control

This paper presents an obstacle avoidance scheme for autonomous vehicles as an active safety procedure in unknown environments. Safe trajectories are generated using the non-linear model predictive framework, in which the simplified dynamics of the vehicle are used to predict the state of the vehicle over the look-ahead horizon. To compensate for the slight dissimilarity between the simplified ...

متن کامل

Obstacle Avoidance for Wheeled Robots in Unknown Environments Using Model Predictive Control

This paper presents a model predictive approach for obstacle avoidance of carlike unmanned ground vehicles (UGVs). An optimal tracking problem while avoiding obstacles in unknown environments is formulated in terms of cost minimization under constraints. Information on obstacles can be incorporated online in the nonlinear model predictive framework and kinematic constraints are treated by Karus...

متن کامل

Spatial Predictive Control for Agile Semi-Autonomous Ground Vehicles

This paper presents a formulation to the obstacle avoidance problem for semi-autonomous ground vehicles. The planning and tracking problems have been divided into a two-level hierarchical controller. The high level solves a nonlinear model predictive control problem to generate a feasible and obstacle free path. It uses a nonlinear vehicle model and utilizes a coordinate transformation which us...

متن کامل

Predictive Control of Autonomous Ground Vehicles with Obstacle Avoidance on Slippery Roads

Two frameworks based on Model Predictive Control (MPC) for obstacle avoidance with autonomous vehicles are presented. A given trajectory represents the driver intent. An MPC has to safely avoid obstacles on the road while trying to track the desired trajectory by controlling front steering angle and differential braking. We present two different approaches to this problem. The first approach so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015